0

Full Content is available to subscribers

Subscribe/Learn More  >

Simultaneous Solution Algorithms for Gas-Solid Flows: An Efficient Parallel Line Solver

[+] Author Affiliations
Juray De Wilde, Edward Baudrez, Geraldine J. Heynderickx, Jan Vierendeels, Denis Constales, Guy B. Marin

Universiteit Gent, Gent, Belgium

Paper No. PVP2004-3116, pp. 11-29; 19 pages
doi:10.1115/PVP2004-3116
From:
  • ASME/JSME 2004 Pressure Vessels and Piping Conference
  • Computational Technologies for Fluid/Thermal/Structural/Chemical Systems With Industrial Applications, Volume 2
  • San Diego, California, USA, July 25–29, 2004
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4686-5
  • Copyright © 2004 by ASME

abstract

A pointwise simultaneous solution algorithm based on dual time stepping was developed by De Wilde et al. (2002). With increasing grid aspect ratios, the efficiency of the point method quickly drops. Most realistic flow cases, however, require high grid aspect ratio grids, with the highest grid spacing in the streamwise direction. In this direction, the stiffness is efficiently removed by applying preconditioning (Weiss and Smith, 1995). In the direction perpendicular to the stream wise direction, stiffness remains because of the viscous and the acoustic terms. To resolve this problem, a line method is presented. All nodes in a plane perpendicular to the stream wise direction, a so-called line, are solved simultaneously. This allows a fully implicit treatment of the fluxes in the line, removing the stiffness in the line wise directions. Calculations with different grid aspect ratios are presented to investigate the convergence behavior of the line method. The line method presented is particularly suited for parallelization. At each pseudo-time step, the lines (typically hundreds) can be solved independently of each other. The Message Passing Interface (MPI) standard (Snir et al., 1996) is used. The communication between the processors can be easily reduced by solving a block of lines per processor. The communication is then limited to information regarding only the outer lines of the block. In common practice, the number of lines is much higher than the number of processors available. In this region of the lines/processor space, the reduction of the calculation time is linear with the number of processors that is used.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In