0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of the Water Flow Into a Mesoporous Matrix From Hydrophobized Silica Gel

[+] Author Affiliations
Claudiu V. Suciu, Takuzo Iwatsubo

Kansai University, Suita-shi, Osaka, Japan

Kazuhiko Yaguchi

Fuji Silysia Chemical, Ltd., Kasugai-shi, Aichi, Japan

Masayoshi Ikenaga

Oiles Corporation, Ashikaga-shi, Tochigi, Japan

Paper No. PVP2004-3109, pp. 211-221; 11 pages
doi:10.1115/PVP2004-3109
From:
  • ASME/JSME 2004 Pressure Vessels and Piping Conference
  • Computational Technologies for Fluid/Thermal/Structural/Chemical Systems With Industrial Applications, Volume 1
  • San Diego, California, USA, July 25–29, 2004
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4686-5
  • Copyright © 2004 by ASME

abstract

In this work a generalized hydrodynamic theory for the water flow into a mesoporous matrix from hydrophobized silica gel is suggested. Although we examine a fluid dynamics problem, i.e., the motion of the water-gas-solid contact line, motivation for such research derives from the investigation of a novel principle of mechanical energy dissipation, called colloidal damper. Similar to hydraulic damper, this absorber has a cylinder-piston structure, but oil is replaced by a colloid consisted of a mesoporous matrix and a lyophobic liquid. Here, the mesoporous matrix is from silica gel modified by linear chains of alkyldimethylchlorosilanes and water is the associated lyophobic liquid. Mainly, the colloidal damper energy loss can be explained by the dynamic contact angle hysteresis in advancing (liquid displaces gas) and receding (gas displaces liquid); such hysteresis occurs due to the geometrical and chemical heterogeneities of the solid surface. Measuring technique of the hysteresis loop is described. From experimental data one calculates the dissipated energy, damper efficiency and the damping coefficient versus the length of the grafted molecule on the silica gel surface. Experimental results are justified by the flow analysis. Generalized hydrodynamic theory means here that the basic structure of Navier-Stokes equations is kept, but in order to include the relation between macroscopic flow and molecular interactions, slip is allowed on the solid wall. Nano-pillar architecture of the silica gel hydrophobic coating is described. During adsorption, water penetrates the pore space by maintaining contact with the top of the coating molecules (region of -CH3 groups); after that, water is forced into and partially or totally fills the space between molecules (region of -CH2 groups); in such circumstances, at the release of the external pressure, desorption occurs. Mechanism of energy dissipation is discussed. Results obtained are useful for the appropriate design of the hydrophobic coating of a mesoporous matrix which is destined to colloidal damper use.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In