Full Content is available to subscribers

Subscribe/Learn More  >

Three-Dimensional Kernel Development With Parasolid for Integral Sheet Metal Design With Higher Order Bifurcations

[+] Author Affiliations
Thomas Rollmann, Anselm Schüle, Reiner Anderl, Youssef Chahadi

Technische Universität Darmstadt, Darmstadt, Germany

Paper No. DETC2009-86546, pp. 787-796; 10 pages
  • ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 29th Computers and Information in Engineering Conference, Parts A and B
  • San Diego, California, USA, August 30–September 2, 2009
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4899-9 | eISBN: 978-0-7918-3856-3
  • Copyright © 2009 by ASME


The technology of linear flow splitting to produce bifurcated sheet metal structures is researched by the collaborative research center 666 since 2005. So far the product design process is supported by 3D-CAD models on the basis of User-Defined-Features in standard 3D-CAD systems. This paper now presents a new approach for generating 3D-models of integral sheet metal design products with higher order bifurcations based on a low-level 3D-kernel. The emphasis is placed on two aspects, namely the processing of the model’s topology and geometry as well as the software implementation. First, a methodology for the generation and manipulation of the geometry and topology of the Boundary Representation (B-Rep) structure is proposed. This methodology is integrated into an algorithm-based product design approach, which enables engineers to plan and design their complete draft for bifurcated sheet metal parts in an automated, computer aided way. Further functionalities to support the subsequent manufacturing process are developed and integrated. The idea is then implemented by developing a 3D-CAD application using the B-Rep CAD-kernel Parasolid. The programming framework. NET has been chosen for the development of the software on a Windows NT platform using the object-oriented C++ and C# programming languages. The work presented here has significant implications on the quality, accurateness and efficiency of the product generation process of sheet metal products with higher order bifurcations.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In