0

Full Content is available to subscribers

Subscribe/Learn More  >

Distributed Sensing Signals of Truncated Conical Shells With Clamped-Free Boundary Conditions

[+] Author Affiliations
H. Li, Z. B. Chen

Harbin Institute of Technology, Harbin, China

H. S. Tzou

University of Kentucky, Lexington, KY

Paper No. DETC2009-87765, pp. 1491-1498; 8 pages
doi:10.1115/DETC2009-87765
From:
  • ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 22nd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • San Diego, California, USA, August 30–September 2, 2009
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4898-2 | eISBN: 978-0-7918-3856-3
  • Copyright © 2009 by ASME

abstract

In aerospace structures, vehicles, civil structures, conical shells are used to support a part or connect different parts, such as spacecraft adaptors, fixtures of machine tools. This type of structures has the possibility of vibration isolation. The final purpose of the on-going research is to isolate the supported part from the vibration transferred from the other end. As a phase of the research, the present paper emphasizes on the distributed sensing signals and modal voltages of the truncated conical shell. To simulate free vibrations of supported part, one end of the truncated conical shell is clamped and the other end is free. The piezoelectric patches are attached on top skin of the shell along diagonal helical line. This paper presents an analytical procedure of sensing of truncated conical shell supporting a mass. The displacement functions satisfying the special boundary conditions are given. Based on the thin-shell theory and Donnel-Mushtari-Valsov theory, sensing equations of the piezoelectric stripes are derived. The sensing signals consist of four components, i.e. sensing signals due to meridional and circular membrane strains, meridional and circular bending strains. These components are studied separately to show their distributions to the sensing signals. Finally, a case study is carried out using a sample truncated conical shell model with laminated piezoelectric stripes.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In