0

Full Content is available to subscribers

Subscribe/Learn More  >

Switched Stiffness Vibration Controllers for Fluidic Flexible Matrix Composites

[+] Author Affiliations
Amir Lotfi-Gaskarimahalle, Christopher D. Rahn

The Pennsylvania State University, University Park, PA

Paper No. DETC2009-87591, pp. 1463-1470; 8 pages
doi:10.1115/DETC2009-87591
From:
  • ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 22nd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • San Diego, California, USA, August 30–September 2, 2009
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4898-2 | eISBN: 978-0-7918-3856-3
  • Copyright © 2009 by ASME

abstract

This paper investigates semi-active vibration control using Fluidic Flexible Matrix Composites (F2 MC) as variable stiffness components of flexible structures. The stiffness of F2 MC tubes can be dynamically switched from soft to stiff by opening and closing an on/off valve. Fiber reinforcement of the F2 MC tube changes the internal volume when externally loaded. With an open valve, the fluid in the tube is free to move in or out of the tube, so the stiffness is low. When the valve is closed, the high bulk modulus fluid resists volume change and produces high stiffness. The equations of motion of an F2 MC-mass system is derived using a 3D elasticity model and the energy method. The stability of the unforced dynamic system is proven using a Lyapunov approach. To capture the important system parameters, nondimensional full order and reduced order models are developed. A Zero Vibration (ZV) state switch technique is introduced that suppresses vibration in finite time, and is compared to conventional Skyhook semiactive control. The ITAE performance of the controllers is optimized by adjusting the open valve flow coefficient. Simulation results show that the optimal ZV controller outperforms the optimal Skyhook controller by 13% and 60% for impulse and step response, respectively.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In