0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Thermal Effects During Blade-Casing Contact Experiments

[+] Author Affiliations
Antoine Millecamps, Jean-François Brunel, Philippe Dufrénoy

Laboratoire de Mécanique de Lille, Villeneuve D’ascq, France

François Garcin, Marco Nucci

Snecma Villaroche, Moissy-Cramayel, France

Paper No. DETC2009-86842, pp. 855-862; 8 pages
doi:10.1115/DETC2009-86842
From:
  • ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 22nd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • San Diego, California, USA, August 30–September 2, 2009
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4898-2 | eISBN: 978-0-7918-3856-3
  • Copyright © 2009 by ASME

abstract

In rotating machinery, notably in modern high efficiency compressors, a critical requirement for optimal performance consists in minimizing radial clearances between the rotating bladed disk and the casing. This solution significantly increases the risks of contact between rotating bladed disk and casing and may lead in specific conditions to catastrophic behavior (component failure, etc.). The physical phenomena and mechanisms involved in blade-casing contact interaction situations are still misunderstood. In order to highlight these mechanisms, specific experiments have been performed on an experimental multi-stage compressor of a turbojet with dedicated dynamic and thermal instrumentations. For all configurations tested, major damages are noticed: blades had cracks and the abradable coating of the casing was heavily machined. Results show that the blade failure refers to fatigue limit with first natural mode excitation of the blade. The paper is focused on the analysis of the successive stages of blade dynamic response before the failure. It is shown that this response is influenced by the variations of the blade-casing contact conditions. These conditions are linked to the thermomechanical behavior and wear of coating, illustrated by high thermal levels and non uniform wear profile. Coupling between thermomechanics, wear and dynamic has to be considered to highlight the transient mechanisms leading to the cases of blade failure.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In