Full Content is available to subscribers

Subscribe/Learn More  >

Resonance Frequency Detection of Dental Implant Stability With Various Bone Defects: In-Vitro Experiments

[+] Author Affiliations
H.-B. Zhuang, M.-Ch. Pan

National Central University, Jhongli, Taiwan

Ch.-S. Chen

Cathay General Hospital, Sijhih, Taiwan

S.-Y. Lee

Yang-Ming University, Taipei, Taiwan

Paper No. DETC2009-87744, pp. 765-772; 8 pages
  • ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 22nd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • San Diego, California, USA, August 30–September 2, 2009
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4898-2 | eISBN: 978-0-7918-3856-3
  • Copyright © 2009 by ASME


Resonance frequency analysis (RFA) has been applied to detect the stability and boundary condition of the dental implant osseointegration in several investigations. Its clinical relating application was generally accepted. Nevertheless, these studies only presented the overall phenomena of osseointegration around the implant and were unable to diagnose the location of the bone defect. Therefore, the aim of this study refers to an effective detection technique for locating the position of bone defect surrounding the dental implant. Various in-vitro bone defect models composed of a dental implant, a healing abutment and an artificial bone block were used to perform the experimental modal analysis (EMA). The bone defect model was excited by an impacted hammer; induced vibration response was acquired by an accelerometer and processed through a spectrum analyzer. The statistical analysis was used to generalize the relationship between the obtained RF values and various bone defects from experimental results. The finding of this study indicates that RF decreases remarkably when the range and depth of defects increase. Thus, the direction of the defect is decided first by RF variations of the sound and defective side, and the position of the defect is discriminated later by RF differences of various bone defect models. This conclusion assists doctors in diagnosis after surgery.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In