0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Material Constants and Mechanical Damping on Piezoelectric Power Generation

[+] Author Affiliations
Alper Erturk, Steven R. Anton, Onur Bilgen, Daniel J. Inman

Virginia Tech, Blacksburg, VA

Paper No. DETC2009-87659, pp. 513-522; 10 pages
doi:10.1115/DETC2009-87659
From:
  • ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 22nd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • San Diego, California, USA, August 30–September 2, 2009
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4898-2 | eISBN: 978-0-7918-3856-3
  • Copyright © 2009 by ASME

abstract

Vibration-to-electricity conversion using piezoelectric transduction has been studied by several researchers over the last decade. PZT (lead zirconate titanate) - based piezoelectric ceramics such as PZT-5A and PZT-5H have been very frequently employed in design of piezoelectric energy harvester beams. Recently, the single-crystal piezoceramics PMN-PT (lead magnesium niobate – lead titanate) and PMN-PZT (lead magnesium niobate – lead zirconate titanate) have also been investigated for electrical power generation due to their large piezoelectric constants (particularly the d31 constant for the bending mode). Piezoelectric, elastic and dielectric properties of these piezoceramics differ from each other considerably. Even though the d31 constants of two piezoceramics might differ by an order of magnitude (e.g. PZT-5A and PMN-PZT), this large difference is not necessarily the case for their power outputs. It is theoretically discussed and experimentally demonstrated in this paper that the d31 piezoelectric constant alone is an insufficient parameter for selecting the best piezoelectric material to design a power generator for vibration-based energy harvesting. Elastic compliance of a piezoceramic has a strong effect on its electrical power output. In addition, since these devices are usually designed for resonance excitation, mechanical damping constitutes another parameter that might change the entire picture regarding the power generation performance. The last one is particularly critical considering the fact that it is difficult to control mechanical damping due to clamped interfaces and adhesive layers in practice. Theoretical comparisons are given for geometrically identical bimorphs with PZT-5A, PZT-5H, PMN-PT (with 30% PT), PMN-PT (with 33% PT) and PMN-PZT layers using an experimentally validated distributed-parameter electromechanical model. Two experimental demonstrations are presented. The first case compares two geometrically identical bimorphs (using PZT-5A and PZT-5H piezoceramics) and shows that the bimorph with PZT-5A can generate larger power than the one with PZT-5H in spite of the larger d31 constant of the latter. The second experimental case compares the power generation performances of a PZT-5H unimorph and a PMN-PZT unimorph. In agreement with the theory, considerably large damping identified for the PMN-PZT unimorph results in much lower power output compared to that of the PZT-5H unimorph.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In