Full Content is available to subscribers

Subscribe/Learn More  >

Harvesting Energy From the Nonlinear Oscillations of a Bistable Piezoelectric Inertial Energy Generator

[+] Author Affiliations
Samuel C. Stanton, Brian P. Mann

Duke University, Durham, NC

Paper No. DETC2009-86902, pp. 447-456; 10 pages
  • ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 22nd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • San Diego, California, USA, August 30–September 2, 2009
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4898-2 | eISBN: 978-0-7918-3856-3
  • Copyright © 2009 by ASME


Piezoelectric materials constitute an efficient transduction medium for passive power generation from ambient vibrations. As such, the unimorph and bimorph piezoelectric laminate linear beam is a prolifically researched energy harvesting device. The linear modeling framework is amenable to analytical solutions and frequency matching inertial energy generators to environmental oscillations is a seemingly ideal solution. Realistically, however, environmental disturbances are rarely of one particular frequency and linear oscillators are capable of strong responses only within a limited frequency range about system resonance. In view of these shortcomings, this paper builds upon a new research direction and shift in design philosophy toward purposefully incorporating nonlinearity into energy harvesting systems. In particular, the nonlinear magnetic forces of repulsion are introduced at the free end of a cantilevered bimorph piezoelectric beam, where the separation distance between two opposing permanent magnets doubles as a controllable bifurcation parameter. The numerical results demonstrate the efficacy of the nonlinear responses to yield markedly increased power levels when subject to deterministic excitations of varying forcing frequency and amplitude.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In