0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Analysis of a Motion Transformer Mimicking a Hula Hoop

[+] Author Affiliations
C. X. Lu, C. C. Wang, C. K. Sung

National Tsing Hua University, Hsinchu, Taiwan

Paul C. P. Chao

National Chiao Tung University, Hsinchu, Taiwan

Paper No. DETC2009-86378, pp. 413-420; 8 pages
doi:10.1115/DETC2009-86378
From:
  • ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 22nd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • San Diego, California, USA, August 30–September 2, 2009
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4898-2 | eISBN: 978-0-7918-3856-3
  • Copyright © 2009 by ASME

abstract

Hula-hoop motion refers to the spinning of a ring around a human body; it is made possible by the interactive force between the moving ring and the body. Inspired by the generic concept of hula-hoop motion, this study proposes a novel motion transformer design that consists of a main mass sprung in one translational direction and a free-moving mass attached at one end of a rod, the other end of which is hinged onto the center of the main mass. It is expected that the transformer is capable of transforming linear reciprocating motion into rotational motion. In addition, the transformer could be integrated with coils, magnets, and electric circuits to form a portable energy scavenging device. A thorough dynamic analysis of the proposed transformer system is conducted in this study in order to characterize the relationships between the varied system parameters and the chance of hula-hoop motion occurrence. The governing equations are first derived by using Lagrange’s Method, which is followed by the search for steady-state solutions and the corresponding stability analysis via the homotopy perturbation method and Floquet theory. Direct numerical simulation is simultaneously performed to verify the correctness of the approximate analysis. In this manner, the feasibility of the proposed design and the occurrence criteria of hula-hoop motion are assessed.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In