0

Full Content is available to subscribers

Subscribe/Learn More  >

A Three-Dimensional Lumped Parameter Model of Nanoscale Phononic Crystals

[+] Author Affiliations
Bruce L. Davis, Mahmoud I. Hussein

University of Colorado at Boulder, Boulder, CO

Paper No. DETC2009-87674, pp. 285-290; 6 pages
doi:10.1115/DETC2009-87674
From:
  • ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 22nd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • San Diego, California, USA, August 30–September 2, 2009
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4898-2 | eISBN: 978-0-7918-3856-3
  • Copyright © 2009 by ASME

abstract

This work focuses on modeling nanoscale phononic crystals by setting up the appropriate Lagrangian equations of motion. The atomic structure and force constants are accounted for by means of a lumped parameter mass-spring model. In particular we focus on a simple cubic lattice with one mass per primitive unit cell. We use the model to predict the wave propagation frequency spectrum. We then use the model to conduct a series of studies on the influence of defects intentionally introduced to the lattice at a supercell level. One area of interest is the effect of such alterations on the size and location of band gaps.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In