Full Content is available to subscribers

Subscribe/Learn More  >

Vibration Isolation via Linear and Nonlinear Periodic Devices

[+] Author Affiliations
A. Spadoni, C. Daraio

California Institute of Technology, Pasadena, CA

Paper No. DETC2009-87620, pp. 277-284; 8 pages
  • ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 22nd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • San Diego, California, USA, August 30–September 2, 2009
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4898-2 | eISBN: 978-0-7918-3856-3
  • Copyright © 2009 by ASME


The current manuscripts deals with the design of passive mechanical filters for vibration attenuation a low frequencies. Traditionally, this has been addressed employing dissipation as the attenuation mechanism. While such strategy provides broad-frequency effectiveness, attenuation at any given frequency is modest. Mass and stiffness-modulated periodic systems, on the other hand, exploit dispersion as the attenuation mechanism and represent an alternative to dissipation-based devices. Attenuation due to dispersion may be significantly higher than what is afforded by dissipation-based systems within a design frequency rage. The proposed assemblies, however, are not easily tailored to filter lowe-frequency vibrations. To this end, embedding such periodic systems into an elastic matrix yields a high-pass mechanical filter with tunable stop bands were waves are not allowed to propagate. Significant improvements in performance moreover may be obtained if intrinsically nonlinear devices are adopted. Specifically, a strongly nonlinear medium such as ordered granular media supports a limited number of waveforms, resulting in an efficient mechanical filter. Results reported here, in fact, suggest matrix-embedded sphere chains as highly tunable mechanical filters for vibration attenuation.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In