Full Content is available to subscribers

Subscribe/Learn More  >

Smart Damping System Based on MR Damper and Electromagnetic Induction Device for Suppressing Vibration of Stay Cable

[+] Author Affiliations
In-Ho Kim, Dong-Doo Jang, Hyung-Jo Jung

KAIST, Daejeon, Republic of Korea

Jeong-Hoi Koo

Miami University, Oxford, OH

Paper No. SMASIS2009-1380, pp. 595-600; 6 pages
  • ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Active Materials, Mechanics and Behavior; Modeling, Simulation and Control
  • Oxnard, California, USA, September 21–23, 2009
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4896-8 | eISBN: 978-0-7918-3857-0
  • Copyright © 2009 by ASME


This paper investigates the effectiveness of a smart damping system consisting of a magnetorheological (MR) damper and an electromagnetic induction (EMI) device in reducing cable vibrations. The smart damping system incorporates an EMI device to reduce complexity of conventional MR damper based semi-active control system by eliminating external power sources. This is because the EMI part in the system generates electrical energy (i.e., induced voltage) from mechanical energy (i.e., reciprocal motions of an MR damper), which can be used as a power source for the MR damper. The primary goal of this experimental study is to evaluate the performance of the proposed smart damping system using a full-scale, 44.7 meters long, high-tension cable. To this end, free vibration responses and damping of the proposed smart damping system were compared with those of an equivalent passive control system. The experimental results show that the smart damping system shows better control performance than all the passive control cases.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In