0

Full Content is available to subscribers

Subscribe/Learn More  >

Defining and Investigating New Symmetry Classes for the Next Generation of Magnetorheological Elastomers

[+] Author Affiliations
Paris R. von Lockette, Samuel Lofland, Joseph Biggs

Rowan University, Glassboro, NJ

Paper No. SMASIS2009-1310, pp. 471-474; 4 pages
doi:10.1115/SMASIS2009-1310
From:
  • ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Active Materials, Mechanics and Behavior; Modeling, Simulation and Control
  • Oxnard, California, USA, September 21–23, 2009
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4896-8 | eISBN: 978-0-7918-3857-0
  • Copyright © 2009 by ASME

abstract

This work addresses the fundamental difference in behavior between magnetorheological elastomers (MREs) formed from soft-magnetic particles, whose behavior is driven by local demagnetizing effects and those formed with hard-magnetic particles that have a preferred magnetic axis and therefore generate magnetic torques at the particle level. This work explores the phenomena by defining and examining four classes of MREs based upon permutations of particle alignment - magnetization pairs, i.e. I-I for magnetically isotropic particles arranged isotropically (randomly, or unaligned), A-A for magnetically anisotropic particles arranged anisotropically (typically aligned in chains), etc. The distinctions are important since the particle-field interactions for each class differ substantially. The behavior of classes I-I and I-A are driven primarily by demagnetizing effects while classes I-A and A-A are driven by the torques produced in the particles. MRE materials made with barium hexaferrite (BaM) (Classes A-A and I-A) and Fe powders (Classes A-I and I-I), aligned and unaligned, served as proxies for each of the four classes in this work. BaM, with saturation magnetization Msat = 4 × 105 A/m and coercive field Hc > 3 × 105 A/m, provided the magnetically anisotropic behavior while iron, with Msat = 1.8 × 106 A/m and Hc < 2 × 103 A/m, provided the soft magnetic behavior. Experiments on materials with 30% v/v particle concentrations showed that under uniform magnetic fields class A-A (aligned BaM) MREs were capable of large deflections in cantilever beam bending (deflections of 12mm for length 50mm and magnetic field 1.2 × 105 A/m) whereas all other classes, including I-A (random BaM) MREs, showed none. Tip deflection varied linearly with applied field strength. Tip blocking-force versus deflection experiments were also conducted on cantilevered A-A specimens. These tests showed that tip force increased with decreasing free deflection and with increasing field strength.

Copyright © 2009 by ASME
Topics: Elastomers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In