0

Full Content is available to subscribers

Subscribe/Learn More  >

Design, Modeling and Control of a New Robotic Module Actuated by Shape Memory Alloy Springs

[+] Author Affiliations
Alireza Hadi, Asadollah Ghazavi

University of Tehran, Tehran, Iran

Mohammad Elahinia

University of Toledo, Toledo, OH

Majid M. Moghadam

Tarbiat Modares University, Tehran, Iran

Paper No. SMASIS2009-1293, pp. 451-456; 6 pages
doi:10.1115/SMASIS2009-1293
From:
  • ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Active Materials, Mechanics and Behavior; Modeling, Simulation and Control
  • Oxnard, California, USA, September 21–23, 2009
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4896-8 | eISBN: 978-0-7918-3857-0
  • Copyright © 2009 by ASME

abstract

Modular robotic systems provide attractive benefits in the form of re-configurable robots that can change and adapt for special tasks. Self-reconfigurable is re-configurable robot with the ability to change their framework for different missions. One way to increase robots capabilities and to achieve self-configurable robots is to develop small, powerful and dexterous modules. In this paper, a new mechanism which uses Shape Memory Alloy (SMA) spring actuators is applied to develop a robotic module. Among the proposed modular systems until now, shape memory alloys especially the spring type are rarely used as actuators. The proposed mechanism is based on antagonistic application of SMA springs which provide faster actuation response. It is shown that the module mechanism is suitable for developing modular robotic systems, such as mobile robots, snake robots, and legged robots. The design of mechanical and electrical hardware of the module in addition to the sensing and actuating system is done talented in an optimum space. The same extendable modules communicate through a common bus in order to develop a distributed system. Consequently a proper module is presented to be applied in different robotic systems. Moreover, an effective non-linear control strategy which is variable structure control is applied for controlling the position of the module. Benefits and suitability of this controller for the module different configurations is verified using simulations and experiments.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In