0

Full Content is available to subscribers

Subscribe/Learn More  >

A State-Space Temporal Finite Element Approach for Stability Investigations of Delay Equations

[+] Author Affiliations
Firas A. Khasawneh, Brian P. Mann

Duke University, Durham, NC

Bhavin Patel

Wayne Engineering, Cedar Falls, IA

Paper No. SMASIS2009-1263, pp. 415-423; 9 pages
doi:10.1115/SMASIS2009-1263
From:
  • ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Active Materials, Mechanics and Behavior; Modeling, Simulation and Control
  • Oxnard, California, USA, September 21–23, 2009
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4896-8 | eISBN: 978-0-7918-3857-0
  • Copyright © 2009 by ASME

abstract

This paper describes a new approach to examine the stability of delay differential equations that builds upon prior work using temporal finite element analysis. In contrast to previous analyses, which could only be applied to second order delay differential equations, the present manuscript develops an approach which can be applied to a broader class of systems — systems that may be written in the form of a state space model. A primary outcome from this work is a generalized framework to investigate the asymptotic stability of autonomous delay differential equations with a single time delay. Furthermore, this approach is shown to be applicable to time-periodic delay differential equations and equations that are piecewise continuous.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In