0

Full Content is available to subscribers

Subscribe/Learn More  >

Strain Behaviors of Manganese-Doped (Bi0.5Na0.5)TiO3-BaTiO3-(Bi0.5K0.5)TiO3 Lead-Free Ferroelectric Ceramics

[+] Author Affiliations
Jay Shieh, You-Chen Lin, Chuin-Shan Chen

National Taiwan University, Taipei, Taiwan

Paper No. SMASIS2009-1405, pp. 253-258; 6 pages
doi:10.1115/SMASIS2009-1405
From:
  • ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Active Materials, Mechanics and Behavior; Modeling, Simulation and Control
  • Oxnard, California, USA, September 21–23, 2009
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4896-8 | eISBN: 978-0-7918-3857-0
  • Copyright © 2009 by ASME

abstract

The strain hystereses of lead-free a(Bi0.5 Na0.5 )TiO3 -bBaTiO3 -c(Bi0.5 K0.5 )TiO3 (abbrev. as BNBK 100a/100b/100c) ferroelectric compositions inside and outside the morphotropic phase boundary (MPB) are investigated. It is found that BNBK 85.4/2.6/12, a composition well within the MPB, possesses notable actuating properties such as an induced electrostrain of about 0.14% and an apparent d33 of 295 pCN−1 . BNBK 85.4/2.6/12 is further doped with various amounts of manganese (Mn) to improve its sinterability and ferroelectric characteristics. Intricate hysteresis behaviors are observed upon Mn doping. The total induced electrostrain of BNBK 85.4/2.6/12 in the 33-directon decreases dramatically from 0.14 to 0.05% when 0.2 mol% of Mn is introduced into the composition. It then recovers sharply as the Mn doping amount is increased progressively to 0.5 and then to 1.0 mol%. However, when the doping amount is further increased above 1.0 mol%, a significant decrease in electrostrain is observed again. The hysteresis data indicate that an electrostrain above 0.1% can be maintained when the Mn doping amount is in between 0.5–1.5 mol%. Once outside this doping range, the induced electrostrain is considerably smaller. By examining the evolution of crystalline phase composition with Mn doping, the mole content of rhombohedral phase is shown to be a critical factor in deciding the straining behaviors of the Mn-doped BNBK 85.4/2.6/12 ceramics. To each increasing step in Mn doping level, there is a marked similarity in the evolutions of the induced electrostrain and rhombohedral phase content.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In