0

Full Content is available to subscribers

Subscribe/Learn More  >

Multivariant Formulation of the Thermomechanically Coupled Müller-Achenbach-Seelecke-Model for Shape Memory Alloys

[+] Author Affiliations
Oliver Kastner, Frank Richter, Gunther Eggeler

Ruhr-University Bochum, Bochum, Germany

Paper No. SMASIS2009-1254, pp. 45-52; 8 pages
doi:10.1115/SMASIS2009-1254
From:
  • ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Active Materials, Mechanics and Behavior; Modeling, Simulation and Control
  • Oxnard, California, USA, September 21–23, 2009
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4896-8 | eISBN: 978-0-7918-3857-0
  • Copyright © 2009 by ASME

abstract

Temperature changes caused by latent transformation heats are an integral part of the behavior of shape memory alloys and inevitably couple the thermal and the mechanical fields. This general behavior is covered by the Müller-Achenbach-Seelecke (MAS) model. Its versatility has been documented extensively in the literature. In the original formulation the MAS model is restricted to uniaxial states of stress in a SMA, which limits its application to cases where such stress states prevail, such as axial loading in wires and trusses, as well as pure beam bending, pure torsion and shrink-fit problems. Unreliable results, however are expected under arbitrary multiaxial loading conditions. To overcome this limitation we present an extension of the model capable of arbitrary stress/strain/temperature states in 3D. Our model adopts ideas presented by Xie but employs a different non-convex free energy function. Rate equations are employed to model temperature or stress/strain induced transformations between austenite and eight variants of martensite present in the model. As the MAS model, the multi-variant model is capable of fully-coupled thermo-mechanical processes which is shown by simulations of temperature-induced processes, quasiplasticity and pseudoelasticity under variable load directions. At the present level of sophistication, the model is restricted to single crystalline SMA. All examples are explained by the use of a standalone model implementation. The model is intended for future implementation into the finite-element-method environment ABAQUS™ to provide a powerful tool useful in the framework of engineering design studies, especially in situations which require non-isothermal conditions and phase transitions.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In