Full Content is available to subscribers

Subscribe/Learn More  >

Mode-I Crack Control by SMA Fiber With a Special Configuration

[+] Author Affiliations
M. Jin

Beijing Jiaotong University, Beijing, China

Paper No. SMASIS2009-1234, pp. 7-13; 7 pages
  • ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Active Materials, Mechanics and Behavior; Modeling, Simulation and Control
  • Oxnard, California, USA, September 21–23, 2009
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4896-8 | eISBN: 978-0-7918-3857-0
  • Copyright © 2009 by ASME


Crack propagation in solid members is an important reason for structure failure. In recent years, many research interests are focused on intelligent control of crack propagation. With the rise in temperature, contraction of prestrained shape memory alloy (SMA) fiber embedded in matrix makes retardation of crack propagation possible. However, with the rise in temperature, separation of SMA fiber from matrix is inevitable. This kind of separation weakens effect of SMA fiber on crack tip. To overcome de-bonding of shape memory alloy (SMA) fiber from matrix, a knot is made on the fiber in this paper. By shape memory effect with the rise in temperature, the knotted SMA fiber generates a couple of recovery forces acting on the matrix at the two knots. This couple of recovery forces may restrain opening of the mode-I crack. Based on Tanaka constitutive law on SMA fiber and complex stress function near an elliptic hole under a point load, a theoretical model on mode-I control is proposed. An analytical expression of relation between stress intensity factor (SIF) of mode-I crack closure and temperature is got. Simulation results show that stress intensity factor of mode-I crack closure decreases obviously with the rise in temperature higher than the austenite start temperature of SMA fiber, and that there is an optimal position for SMA fiber to restrain crack opening, which is behind the crack tip. Therefore the theoretical model supports that prestrained SMA fiber with knots in martensite can be used to control mode-I crack opening effectively because de-bonding between fiber and matrix is eliminated. Specimen of epoxy resin embedded with knotted SMA fiber can be made in experiment and is useful to an analytical study. However, in practical point of view, SMA fiber should be embedded in engineering structure material such as steel, aluminum, etc. The embedding process in these matrix materials should be studied systematically in the future.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In