0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of Damped Air Bearings at Head Disk Interface

[+] Author Affiliations
Jianhua Li, Junguo Xu, Yuki Shimizu, Kyosuke Ono

Hitachi Ltd., Fujisawa, Japan

Masayuki Honchi

Hitachi GST, Fujisawa, Japan

Paper No. IJTC2009-15079, pp. 399-402; 4 pages
doi:10.1115/IJTC2009-15079
From:
  • ASME/STLE 2009 International Joint Tribology Conference
  • ASME/STLE 2009 International Joint Tribology Conference
  • Memphis, Tennessee, USA, October 19–21, 2009
  • Conference Sponsors: Tribology Division
  • ISBN: 978-0-7918-4895-1 | eISBN: 978-0-7918-3862-4
  • Copyright © 2009 by ASME

abstract

Small perturbation and modal-analysis methods were employed to systematically study a damped slider’s dynamic characteristics. We found that a design with grooves distributed on a trailing pad effectively improved the slider’s damping at higher frequencies, and the damping ratio was dependent on the number of grooves, their depth, location, width, length, distribution, orientation, and types. A higher damping ratio could be obtained by optimizing these parameters. The femto slider with distributed damping grooves on a trailing pad had a higher damping ratio in the third mode, and hence, its responses to disk parallel and wavy motion were greatly reduced. This new design for the damped slider was an effective solution reducing the slider’s modulation.

Copyright © 2009 by ASME
Topics: Bearings , Design , Disks

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In