Full Content is available to subscribers

Subscribe/Learn More  >

A FEM Based Multiple Asperity Deterministic Contact Model

[+] Author Affiliations
A. Megalingam, M. M. Mayuram

Indian Institute of Technology Madras, Chennai, India

Paper No. IJTC2009-15231, pp. 375-377; 3 pages
  • ASME/STLE 2009 International Joint Tribology Conference
  • ASME/STLE 2009 International Joint Tribology Conference
  • Memphis, Tennessee, USA, October 19–21, 2009
  • Conference Sponsors: Tribology Division
  • ISBN: 978-0-7918-4895-1 | eISBN: 978-0-7918-3862-4
  • Copyright © 2009 by ASME


Knowledge of contact stresses generated when two surfaces are in contact play a significant role in understanding most mechanisms of friction and wear. Most of present contact models are based on the Greenwood-Williamson (GW) single asperity contact model and a statistical approach is adopted to calculate the real contact area for the entire surface based on the assumption that all the summits have uniform radius of curvatures and their heights vary randomly. But in real cases, the asperity radii vary. For a clear understanding about those aspects, a multiple asperity contact model, based on 3-D rough surface generated is analyzed using a commercial FEM package. Salient aspects of the present model are presented here and results are compared with a single asperity contact model.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In