0

Full Content is available to subscribers

Subscribe/Learn More  >

An Analytical Model for Predicting Contact Stress and Sliding Wear of a Three-Dimensional Textured Surface

[+] Author Affiliations
Elon J. Terrell

Columbia University, New York, NY

C. Fred Higgs, III

Carnegie Mellon University, Pittsburgh, PA

Paper No. IJTC2009-15219, pp. 359-361; 3 pages
doi:10.1115/IJTC2009-15219
From:
  • ASME/STLE 2009 International Joint Tribology Conference
  • ASME/STLE 2009 International Joint Tribology Conference
  • Memphis, Tennessee, USA, October 19–21, 2009
  • Conference Sponsors: Tribology Division
  • ISBN: 978-0-7918-4895-1 | eISBN: 978-0-7918-3862-4
  • Copyright © 2009 by ASME

abstract

In this paper, an analytical model for predicting the contact stress and wear distribution between a textured surface and a compliant flat is presented. The modeling formulation is based upon a two-dimensional stress analysis of the flat, and it allows the contact stress distribution to be found from the distribution of the sample deflection into the flat surface. The wear evolution was calculated from the contact stress.

Copyright © 2009 by ASME
Topics: Wear , Stress

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In