Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Machining Induced White Layer on Frictional and Wear Performance at Dry and Lubricated Sliding Contact

[+] Author Affiliations
R. A. Waikar, Y. B. Guo

The University of Alabama, Tuscaloosa, AL

Paper No. IJTC2009-15112, pp. 245-247; 3 pages
  • ASME/STLE 2009 International Joint Tribology Conference
  • ASME/STLE 2009 International Joint Tribology Conference
  • Memphis, Tennessee, USA, October 19–21, 2009
  • Conference Sponsors: Tribology Division
  • ISBN: 978-0-7918-4895-1 | eISBN: 978-0-7918-3862-4
  • Copyright © 2009 by ASME


A white layer on a machined surface is often produced at abusive machining conditions. However, the effect of white layer on frictional and wear performance has received little attention. This study has shown that the existence of a turned white layer slightly decreases the coefficient of friction (COF), while a ground white layer significantly increases COF at dry conditions. At lubricated conditions, the turned white layer only slightly increases COF while the ground white layer slightly reduces it. The third body wear debris may act as solid lubricants leading to reduced friction.

Copyright © 2009 by ASME
Topics: Wear , Machining



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In