Full Content is available to subscribers

Subscribe/Learn More  >

Thermohydrodynamic Lubrication Analysis of Slider Bearings With Steps on Bearing Surface

[+] Author Affiliations
Hideki Ogata

IHI Corporation, Yokohama, Japan

Paper No. IJTC2009-15144, pp. 201-203; 3 pages
  • ASME/STLE 2009 International Joint Tribology Conference
  • ASME/STLE 2009 International Joint Tribology Conference
  • Memphis, Tennessee, USA, October 19–21, 2009
  • Conference Sponsors: Tribology Division
  • ISBN: 978-0-7918-4895-1 | eISBN: 978-0-7918-3862-4
  • Copyright © 2009 by ASME


This study focuses on the thermohydrodynamic lubrication analysis of fluid film bearings with step on the surface such as a Rayleigh step bearing. In general, the Reynolds equation does not satisfy the continuity of the fluid velocity components at steps. This discontinuity results in the difficulty to solve the energy equation for the lubricants, because the energy equation needs the velocity components explicitly. The author has solved this problem by introducing the equivalent clearance height and the equivalent gradient of clearance height at steps. These parameters remove the discontinuity of velocity components and the energy equation as well, so that one can solve these equations on all of the bearing surfaces including the step region by finite differential method (FDM). The numerical results of pressure and temperature distributions by the proposed method for a Rayleigh step bearing were compared with the results obtained by a commercial CFD package. These results showed good agreement with each other. This method is extended to 2D unequal grid problems.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In