0

Full Content is available to subscribers

Subscribe/Learn More  >

A Study of a Dual Clearance Squeeze Film Damper

[+] Author Affiliations
L. Moraru

Politehnica University of Bucharest, Bucharest, Romania

T. G. Keith, Jr., F. Dimofte, S. Cioc

The University of Toledo, Toledo, OH

D. P. Fleming

NASA Glenn Research Center, Cleveland, OH

Paper No. IJTC2009-15132, pp. 197-199; 3 pages
doi:10.1115/IJTC2009-15132
From:
  • ASME/STLE 2009 International Joint Tribology Conference
  • ASME/STLE 2009 International Joint Tribology Conference
  • Memphis, Tennessee, USA, October 19–21, 2009
  • Conference Sponsors: Tribology Division
  • ISBN: 978-0-7918-4895-1 | eISBN: 978-0-7918-3862-4
  • Copyright © 2009 by ASME

abstract

Squeeze film dampers (SFD) are devices utilized to control vibrations of the shafts of high-speed rotating machinery. A dual squeeze film damper (DSFD) consists of two squeeze film bearings that are separated by a sleeve, which is released when the rotor experiences abnormal operating conditions. In this part of our study of DSFD we analyze the case when both the inner and the outer oil films are active. Previous studies utilized closed form analytical expressions to describe the forces within the lubricant. In this paper the oil forces are modeled using pressure distributions obtained from numerical solutions of the Reynolds equation. Numerical results are compared with the experimental data.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In