Full Content is available to subscribers

Subscribe/Learn More  >

Explicit Finite Element Simulation of Granular Flow in an Annular Shear Cell

[+] Author Affiliations
M. A. Kabir, C. F. Higgs, III, V. Jasti, M. C. Marinack, Jr.

Carnegie Mellon University, Pittsburgh, PA

M. R. Lovell

University of Wisconsin-Milwaukee, Milwaukee, WI

Paper No. IJTC2009-15215, pp. 123-125; 3 pages
  • ASME/STLE 2009 International Joint Tribology Conference
  • ASME/STLE 2009 International Joint Tribology Conference
  • Memphis, Tennessee, USA, October 19–21, 2009
  • Conference Sponsors: Tribology Division
  • ISBN: 978-0-7918-4895-1 | eISBN: 978-0-7918-3862-4
  • Copyright © 2009 by ASME


Explicit finite element method modeling of granular flow behavior in an annular shear cell has been studied and presented in this paper. The explicit finite element method (FEM) simulations of granular flow in an annular shear cell with around 1633 particles were performed, where the inner wheel rotated at a very high speed and the outer disk remained stationary. The material properties of the particles and the outer wheel were defined as elastic steel whereas the inner wheel was elastic aluminum. In this investigation, the explicit FEM model mimicked granular flow in an experimental set up where the inner wheel was rotated at a speed of 240 rpm. The FEM results for shearing motion and solid fraction were compared with experimental results from a granular shear cell.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In