Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Damage Evaluation in CFRP Woven Fabric Composites Through Dynamic Modulus Measurements

[+] Author Affiliations
Hideaki Kasano, Osamu Hasegawa

Takushoju University, Hachioji City, Tokyo, Japan

Chiaki Miyasaka

Pennsylvania State University, University Park, PA

Paper No. PVP2004-2843, pp. 243-245; 3 pages
  • ASME/JSME 2004 Pressure Vessels and Piping Conference
  • Recent Advances in Nondestructive Evaluation Techniques for Material Science and Industries
  • San Diego, California, USA, July 25–29, 2004
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4679-2
  • Copyright © 2004 by ASME


Advanced fiber reinforced composite materials offer substantial advantages over metallic materials for the structural applications subjected to fatigue loading. With the increasing use of these composites, it is required to understand their mechanical response to cyclic loading [1–4]. Our major concern in this work is to macroscopically evaluate the damage development in composites during fatigue loading. For this purpose, we examine what effect the fatigue damage may have on the material properties and how they can be related mathematically to each other. In general, as the damage initiates in composite materials and grows during cyclic loading, material properties such as modulus, residual strength and strain would vary and, in many cases, they may be significantly reduced because of the progressive accumulation of cracks. Therefore, the damage can be characterized by the change in material properties, which is expected to be available for non-destructive evaluation of the fatigue damage development in composites. Here, the tensiontension fatigue tests are firstly conducted on the plain woven fabric carbon fiber composites for different loading levels. In the fatigue tests, the dynamic elastic moduli are measured on real-time, which will decrease with an increasing number of cycles due to the degradation of stiffness. Then, the damage fimction presenting the damage development during fatigue loading is determined from the dynamic elastic moduli thus obtained, from which the damage function is formulated in terms of a number of cycles and an applied loading level. Finally, the damage function is shown to be applied for predicting the remaining fifetime of the CFRP composites subjected to two-stress level fatigue loading.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In