0

Full Content is available to subscribers

Subscribe/Learn More  >

Vortex Analytical Model of a Circulation Controlled Vertical Axis Wind Turbine

[+] Author Affiliations
Jay P. Wilhelm, Chad C. Panther, Franz A. Pertl, James E. Smith

West Virginia University, Morgantown, WV

Paper No. ES2009-90348, pp. 993-1000; 8 pages
doi:10.1115/ES2009-90348
From:
  • ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences
  • ASME 2009 3rd International Conference on Energy Sustainability, Volume 2
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4890-6 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

A possible method for modeling a Circulation Controlled - Vertical Axis Wind Turbine (CC-VAWT) is a vortex model, based upon the circulation of a turbine blade. A vortex model works by continuously calculating the circulation strength and location of both free and blade vortices which are shed during rotation. The vortices’ circulation strength and location can then be used to compute a velocity at any point in or around the area of the wind turbine. This model can incorporate blade wake interactions, unsteady flow conditions, and finite aspect ratios. Blade vortex interactions can also be studied by this model to assist designers in the avoidance of adverse turbulent operational regions. Conventional vertical axis wind turbine power production is rated to produce power in an operating wind speed envelope. These turbines, unless designed specifically for low speed operation require rotational start-up assistance. The VAWT blade can be augmented to include circulation control capabilities. Circulation control can prolong the trailing edge separation and can be implemented by using blowing slots located adjacent to a rounded trailing edge surface; the rounded surface of the enhanced blade replaces the sharp trailing edge of a conventional airfoil. Blowing slots of the CC-VAWT blade are located on the top and bottom trailing edges and are site-controlled in multiple sections along the span of the blade. Improvements in the amount of power developed at lower speeds and the elimination or reduction of start-up assistance could be possible with a CC-VAWT. In order to design for a wider speed operating range that takes advantage of circulation control, an analytical model of a CC-VAWT would be helpful. The primary function of the model is to calculate the aerodynamic forces experienced by the CC-VAWT blade during various modes of operation, ultimately leading to performance predictions based on power generation. The model will also serve as a flow visualization tool to gain a better understanding of the effects of circulation control on the development and interactions of vortices within the wake region of the CC-VAWT. This paper will describe the development of a vortex analytical model of a CC-VAWT.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In