Full Content is available to subscribers

Subscribe/Learn More  >

Atmospheric Wind Data Collection and Wind Turbine Analysis in UAE

[+] Author Affiliations
Isam Janajreh, Rana Qudaih, Ilham Talab, Zaki Al Nahari

Masdar Institute of Science and Technology, Abu Dhabi, UAE

Paper No. ES2009-90288, pp. 977-991; 15 pages
  • ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences
  • ASME 2009 3rd International Conference on Energy Sustainability, Volume 2
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4890-6 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


Wind turbine technology has improved dramatically in the last two decades as demonstrated by their plummeting capital costs ($0.08/KW), the enhanced reliability, and the increased efficiency. Large-scale wind turbines and wind farms provided 94.1GW of electrical grid capacity in 2007, and are expected to reach 160 GW by 2010 according to WWEA. Wind energy is plentiful and sustainable energy source with an estimated potential capacity of 72 TW. In Denmark the inland and offshore implementation of wind energy generation adds 1/5 of their electrical grid capacity. In Germany, it is forecasted to attain 12.5% by early 2010. Offshore wind farms have lower ecological impact due to lack of land mortgage, easier transportation, and low perception of noise issue. In the gulf region, the generated power can fulfill the power needs of UAE’s islands, while the excess capacity can be channeled to the inland grids fulfilling the peak demand. In this work we will investigate the implementation of low-turning moment wind turbines in the UAE, suited for low wind speeds (∼3–5m/s) and that consists of two research components: (i) Collection of wind data, analysis, recommendation for implementation strategies, and using Masdar wind data to assess its characteristics and its fit for wind turbine implementation; (ii) Carry out flow analysis on a downwind, two-bladed, horizontal-axes wind turbine to investigate the flow lift, drag and wake characteristics on the tower blade interaction. The interaction is studied utilizing Arbitrary Lagrangian Eulerian method. Downwind turbines are self-aligned, pass up yaw mechanisms and its needed power, and have fewer moving parts that necessitate regular maintenance. These factors however play in favor of wind turbine that is subjected to low wind speed.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In