0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effects of Thermal Mass and Phase Change Material on a Buildings’ Thermal Load

[+] Author Affiliations
Robert B. Gilbert

University of Dayton, Dayton, OH

Paper No. ES2009-90367, pp. 887-895; 9 pages
doi:10.1115/ES2009-90367
From:
  • ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences
  • ASME 2009 3rd International Conference on Energy Sustainability, Volume 2
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4890-6 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

A finite-difference model is used to simulate the effects of thermal mass and phase change material on thermal transmission through a building’s envelope wall. The exterior temperature is simulated by a sinusoidal function. The inside temperature is held constant. A comparison is given between the effects of thermal mass and phase change material. The maximum reduction in thermal load and required conditions is given for both thermal mass and phase change material. Equations are given for the maximum thermal load reduction as a function of the inside and outside temperature. Equations are also given which treat the thermal mass as a lumped capacitance and the expected error as a function of the amount of thermal mass. The conditions under which the addition of thermal mass and/or phase change material will result in a reduction of thermal load is given.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In