Full Content is available to subscribers

Subscribe/Learn More  >

Solid/Liquid Phase Change Heat Transfer in Latent Heat Thermal Energy Storage

[+] Author Affiliations
D. Zhou, C. Y. Zhao

University of Warwick, Coventry, UK

Paper No. ES2009-90052, pp. 863-869; 7 pages
  • ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences
  • ASME 2009 3rd International Conference on Energy Sustainability, Volume 2
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4890-6 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


Phase change materials (PCMs) have been widely used for thermal energy storage systems due to their capability of storing and releasing large amounts of energy with a small volume and a moderate temperature variation. Most PCMs suffer the common problem of low thermal conductivity, being around 0.2 and 0.5 for paraffin and inorganic salts, respectively, which prolongs the charging and discharging period. In an attempt to improve the thermal conductivity of phase change materials, the graphite or metallic matrix is often embedded within PCMs to enhance the heat transfer. This paper presents an experimental study on heat transfer characteristics of PCMs embedded with open-celled metal foams. In this study both paraffin wax and calcium chloride hexahydrate are employed as the heat storage media. The transient heat transfer behavior is measured. Compared to the results of pure PCMs samples, the investigation shows that the additions of metal foams can double the overall heat transfer rate during the melting process. The results of calcium chloride hexahydrate are also compared with those of paraffin wax.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In