0

Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of Salt Hydrates for Compact Seasonal Thermochemical Storage

[+] Author Affiliations
V. M. van Essen, J. Cot Gores, L. P. J. Bleijendaal, H. A. Zondag, R. Schuitema, M. Bakker, W. G. J. van Helden

ECN, Energy Research Centre of the Netherlands, Petten, The Netherlands

Paper No. ES2009-90289, pp. 825-830; 6 pages
doi:10.1115/ES2009-90289
From:
  • ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences
  • ASME 2009 3rd International Conference on Energy Sustainability, Volume 2
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4890-6 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

This paper describes the characterization of four salt hydrates as potential thermochemical material for compact seasonal heat storage in the built environment. First, magnesium sulfate was investigated in detail using TG-DSC apparatus. The results of this study revealed that magnesium sulfate is able to store almost 10 times more energy than water of the same volume. However, the material was unable to take up water (and release heat) under practical conditions. A new theoretical study identified three salt hydrates besides magnesium sulfate as promising materials for compact seasonal heat storage: aluminum sulfate, magnesium chloride and calcium chloride. These salt hydrates (including magnesium sulfate) were tested in a newly constructed experimental setup. Based on the observed temperature lift under practical conditions, it was found that magnesium chloride was the most promising material of the four tested salt hydrates. However, both calcium chloride and magnesium chloride tend to form a gel-like material due to melting or formation of a solution. This effect is undesired since it reduces the ability of the material to take up water again. Finally, it was observed that performing the hydration at low-pressure will improve the water vapor transport in comparison to atmospheric pressure hydration.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In