Full Content is available to subscribers

Subscribe/Learn More  >

Recycling Biomass Co-Combustion Fly-Ash Products for an Integrated Solar-Assisted Ventilation System

[+] Author Affiliations
C. W. Kwong, C. Y. H. Chao

The Hong Kong University of Science and Technology, Hong Kong, China

K. S. Hui

City University of Hong Kong, Hong Kong, China

Paper No. ES2009-90128, pp. 783-788; 6 pages
  • ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences
  • ASME 2009 3rd International Conference on Energy Sustainability, Volume 2
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4890-6 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


The potential use of biomass co-combustion derived fly-ash products and zeolite 13X for the elimination of volatile organic compounds (VOCs) using ozone was investigated for an integrated solar-assisted air purification and desiccant cooling system. Fly-ash products from rice husk-coal co-combustion at different biomass blending ratios were used as the adsorbent/catalyst materials. The material characteristics of the adsorbent/catalyst materials such as metal content and surface area were compared and correlated with the catalytic activities. It was found that the surface area and the metal constitutes have made the catalytic activities over the fly-ash products from biomass co-combustion superior to that from coal-only combustion. The elevated reaction temperatures from 25°C to 75°C also have significant effects on the removal of VOCs. The apparent activation energies of the reaction path over the fly-ash products with the addition of ozone to the air were reduced, when compared with the use of air as an oxidant. On the other hand, the potential synergy to Zeolite 13X was explored. The combined catalytic ozonation and adsorption enhanced the VOCs removal and at the same time reduced the intermediates emission. Furthermore, the hydrophilic properties of zeolite 13X could be utilized to handle the latent load of the solar-assisted ventilation system for energy conservations.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In