Full Content is available to subscribers

Subscribe/Learn More  >

Shear Induced Removal of Calcium Carbonate Scale From Polypropylene and Copper Tubes

[+] Author Affiliations
Matt Royer, Jane H. Davidson, Lorraine F. Francis, Susan C. Mantell

University of Minnesota, Minneapolis, MN

Paper No. ES2009-90006, pp. 727-739; 13 pages
  • ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences
  • ASME 2009 3rd International Conference on Energy Sustainability, Volume 2
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4890-6 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


This paper presents an analytical model and experimental study of adhesion and fluid shear removal of calcium carbonate scale on polypropylene and copper tubes in laminar and turbulent water flows, with a view toward understanding how scale can be controlled in solar absorbers and heat exchangers. The tubes are first coated with scale and then inserted in a flow through apparatus. Removal is measured gravimetrically for Reynolds numbers from 525 to 5550, corresponding to wall shear stresses from 0.16 to 6.0 Pa. The evolutionary structure of the scale is visualized with scanning electron microscopy. Consistent with the predictive model, calcium carbonate is more easily removed from polypropylene than copper. In a laminar flow with a wall shear stress of 0.16 Pa, 65% of the scale is removed from polypropylene while only 10% is removed from copper. Appreciable removal of scale from copper requires higher shear stresses. At Reynolds number of 5500, corresponding to a wall shear stress of 6.0 Pa, 30% of the scale is removed from the copper tubes. The results indicate scale will be more easily removed from polypropylene, and by inference other polymeric materials, than copper by flushing with water.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In