0

Full Content is available to subscribers

Subscribe/Learn More  >

Economic Potential of Solar Thermal Power Plants With Direct Steam Generation Compared to HTF Plants

[+] Author Affiliations
Jan Fabian Feldhoff, Markus Eck

German Aerospace Center (DLR), Stuttgart, Germany

Daniel Benitez, Klaus-Jürgen Riffelmann

Flagsol GmbH, Cologne, Germany

Paper No. ES2009-90298, pp. 663-671; 9 pages
doi:10.1115/ES2009-90298
From:
  • ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences
  • ASME 2009 3rd International Conference on Energy Sustainability, Volume 2
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4890-6 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

The direct steam generation (DSG) in parabolic trough collectors is a promising option to improve the mature parabolic trough solar thermal power plant technology of the Solar Energy Generating Systems (SEGS) in California. According to previous studies [1–3], the cost reduction of the DSG process compared to the SEGS technology is expected to be 8 to 25%. All these studies were more or less preliminary since they lacked detailed information on the design of collector fields, absorber tubes required for steam temperatures higher than 400°C and power blocks adapted to the specific needs of the direct steam generation. To bridge this gap, a detailed system analysis was performed within the German R&D project DIVA. Power blocks and collector fields were designed for four different capacities (5, 10, 50 and 100 MWel ) and different live steam parameters. The live steam temperature was varied between saturation temperature and 500°C, and live steam pressures of 40, 64 and 100 bar were investigated. To assess the different cases, detailed yield analyses of the overall system were performed using hourly data for the direct normal irradiation and the ambient temperature for typical years. Based on these results the levelized costs of electricity were determined for all cases and compared to a reference system using synthetic oil as heat transfer fluid (HTF). This paper focuses on two main project findings. First, the 50 MWel DSG system parameter comparisons are presented. Second, the detailed comparison between a DSG and a SEGS-like 100 MWel system is given. The main result of the investigation is that the benefit of the DSG process depends on the project site and can reach an 11% reduction of the levelized electricity cost (LEC).

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In