Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Lab-Scale Rotary Cavity-Type Solar Reactor for Continuous Thermal Reduction of Volatile Oxides Under Reduced Pressure

[+] Author Affiliations
Marc Chambon, Stéphane Abanades, Gilles Flamant

PROMES-CNRS, Odeillo Font-Romeu, France

Paper No. ES2009-90449, pp. 507-515; 9 pages
  • ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences
  • ASME 2009 3rd International Conference on Energy Sustainability, Volume 2
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4890-6 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


The investigated two-step Mx Oy / Mx Oy−1 solar thermochemical cycles consist of two redox reactions. Net result is watersplitting with concentrated solar energy as the source of high temperature process heat:

1) Solar reduction:
MxOy → MxOy−1 + 1/2 O2
(about 1700°C at atmospheric pressure,
2) Hydrolysis:
MxOy−1 + H2O → MxOy + H2
(about 400°C, exothermal)
The Mx Oy− 1 species produced in reaction (1) is gaseous in the case of the ZnO/Zn cycle. The oxide (ZnO) is injected in a solar thermochemical reactor and undergoes a thermal reduction reaction (oxygen release). Dilution/quenching with a neutral gas at the reactor exit yields nanoparticles of metal by condensation. The particles have a high specific surface area that leads to a high reactivity in the 2nd step. The reduced species (Zn) can then be fed to another reactor to react with water steam. The reaction produces pure H2 and forms the original metal oxide. A high-temperature lab-scale solar reactor prototype was designed, constructed and operated, allowing continuous metal oxide processing under controlled atmosphere. It is based on a cavity-type rotating receiver absorbing solar radiation. The reactant powder is injected continuously inside the cavity and the produced particles (Zn) are recovered in a downstream filter. The solar reduction of ZnO has been achieved, the reaction yields were quantified, and a first concept of solar reactor was qualified.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In