Full Content is available to subscribers

Subscribe/Learn More  >

Reactive Structures for Two-Step Thermochemical Cycles Based on Non-Volatile Metal Oxides

[+] Author Affiliations
Nathan Siegel, Richard Diver, James E. Miller, Terry Garino, Stephanie Livers

Sandia National Laboratories, Albuquerque, NM

Paper No. ES2009-90093, pp. 431-437; 7 pages
  • ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences
  • ASME 2009 3rd International Conference on Energy Sustainability, Volume 2
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4890-6 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


Metal-oxide based thermochemical cycles, such as those including a class of iron containing materials commonly known as ferrites, involve two reaction steps: a thermal reduction at temperatures up to 1600 °C driven by a solar energy input, and a lower temperature exothermic oxidation in the presence of either carbon dioxide or water. In order to maximize performance, the reactive materials must be arranged into structures that provide an effective interface for the direct absorption of concentrated solar energy and also have relatively high surface area to support rapid chemical reactions. In this paper we discuss the attributes of reactive structures for solar thermochemical processes as well as some of the fabrication techniques currently under development at Sandia National Labs. One of these structures has been demonstrated on-sun in a two step carbon dioxide splitting cycle. The results, given in this paper, indicate that performance may be improved as the fraction of the total directly illuminated surface area is increased, reducing the need to rely on conduction or convection to distribute heat throughout the material.

Copyright © 2009 by ASME
Topics: Metals , Cycles



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In