0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling, Testing, and Evaluation of a Building-Integrated Photovoltaic-Thermal Collector

[+] Author Affiliations
Charles D. Corbin, Michael J. Brandemuehl

University of Colorado, Boulder, CO

Paper No. ES2009-90301, pp. 319-328; 10 pages
doi:10.1115/ES2009-90301
From:
  • ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences
  • ASME 2009 3rd International Conference on Energy Sustainability, Volume 2
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4890-6 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

The performance of Building-Integrated Photovoltaic-Thermal (BIPV/T) collector is examined in this study. A full scale-test collector is monitored over several weeks in the summer of 2008 and measured data is used to calibrate a heat transfer model implemented in a common scientific computing software package. Following calibration, error between experimental measurements and the calibrated model outputs is within the limits of measurement uncertainty. Collector simulations are constructed to examine thermal efficiency, the effectiveness of the collector as a night-sky radiator, the effect of heat collection on electrical efficiency, the effect of two common exterior convection coefficients on collector performance, and the effect of eliminating the air gap between the PV and absorber surfaces. Overall collector thermal efficiency is relatively low compared to existing collectors. However, the potential low cost of the system could allow larger collector areas to compensate for low efficiency, especially in warm climates. Combined thermal and electrical efficiency can be as high as 34%. Additional analysis also indicates that the predicted thermal performance is highly dependent on the thermal resistance between the PV cells and the absorber plate and is sensitive to assumptions regarding wind-driven convection heat transfer coefficients.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In