Full Content is available to subscribers

Subscribe/Learn More  >

Electrical and CHP Efficiencies of a 1 MW University Fuel Cell Power Plant

[+] Author Affiliations
Robert Ryan

California State University, Northridge, CA

Paper No. ES2009-90373, pp. 197-207; 11 pages
  • ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences
  • ASME 2009 3rd International Conference on Energy Sustainability, Volume 2
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4890-6 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


A 1 MW fuel cell power plant began operation at California State University, Northridge (CSUN) in January, 2007. The power plant was installed on campus to complement a Satellite Chiller Plant which is being constructed in response to increased cooling demands related to campus growth. The power plant consists of four 250 kW fuel cell units, and a waste heat recovery system which produces hot water for the campus. The waste heat recovery system was designed by CSUN’s Physical Plant Management personnel, in consultation with engineering faculty and students, to accommodate the operating conditions required by the fuel cell units as well as the thermal needs of the campus. A unique plenum system, known as a Barometric Thermal Trap, was created to mix the four fuel cell exhaust streams prior to flowing through a two stage heat exchanger unit. The two stage heat exchanger uses separate coils for recovering sensible and latent heat in the exhaust stream. The sensible heat is being used to partially supply the campus’ building hot water and space heating requirements. The latent heat is intended for use by an adjacent recreational facility at the University Student Union. This paper discusses plant performance data which was collected and analyzed over a several month period during 2008. Electrical efficiencies and Combined Heat and Power (CHP) efficiencies are presented. The data shows that CHP efficiencies have been consistently over 60%, with the potential to exceed 70% when planned improvements to the plant are completed.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In