0

Full Content is available to subscribers

Subscribe/Learn More  >

A Novel “Wireless On-Off Control” Technique for Household Heat Adjusting and Metering in District Heating System

[+] Author Affiliations
Lanbin Liu, Lin Fu, Yi Jiang

Tsinghua University, Beijing, China

Paper No. ES2009-90244, pp. 135-143; 9 pages
doi:10.1115/ES2009-90244
From:
  • ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences
  • ASME 2009 3rd International Conference on Energy Sustainability, Volume 2
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4890-6 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

A large-scale survey and on-site measurements on space heating systems in Beijing has been carried out since 2005. Detailed analysis shows that the improvement of system regulation to adjust the heating demand and to avoid over-heating in building space is the key to reduce the heating energy consumption. It also indicates that combined heat and power (CHP) based district heating network is the most suitable solution for the space heating in Chinese northern cities. Thus, the priority should be in the research and development of new techniques to improve heating system regulation and control. In China, there are three reasons for poor heating system regulation: • the lack of control devices in space heating system, • the complex and inconvenient operation, and • the insufficient motivation because the charging policy is based on the heating areas. Field test results show that 20% to 30% of thermal energy is wasted because of the poor heating system regulation. In order to solve these problems, a novel “wireless on-off control” system for household heat adjusting and metering has been proposed. This technology works in the following way: 1) a calorimeter is installed at each building to measure the total heat consumption of the whole building; 2) an on-off valve is installed for each household and an indoor temperature controller is provided for the occupants. The operation procedure is as follows. First, the desired indoor temperature is set by the users through the indoor temperature controller and wireless signals are sent to the on-off valve. Then the on-off valve detects the real indoor temperature and determines the difference between the real temperature and the set value. After this, the valve calculates the proportion of on-time to off-time in the next step according to the thermal strategies programmed in the valve’ CPU. Then the valve is controlled according to the proportion to maintain the desired indoor temperature; and 3) the heating cost of each household can be allocated according to its heating area and the accumulative open time of the valve. The proposed technique has been applied in fifteen residential communities with the total areas of 1,200,000 m2 . The testing results show that: 1) indoor temperatures were accurately controlled within +/− 0.5 °C around the set point, so that the problem of overheating can be avoided; 2) the difference of temperature in different room is less than 1 °C. Therefore, if radiators in each room are designed reasonably, to control the temperature of one room can meet the requirements of the entire user’s apartment; 3) energy consumption in the controlled household was approximately 30% lower than the uncontrolled household with the same building type.

Copyright © 2009 by ASME
Topics: Heat , Central heating

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In