Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of Limit Load, Linear and Nonlinear FE Analyses of Stresses in a Large Nozzle-to-Shell Diameter Ratio Application

[+] Author Affiliations
Michael A. Porter

Dynamic Analysis, Lawrence, KS

Steven R. Massey, Dennis H. Martens

Black & Veatch Pritchard Corporation, Overland Park, KS

Paper No. PVP2004-2598, pp. 73-77; 5 pages
  • ASME/JSME 2004 Pressure Vessels and Piping Conference
  • Design and Analysis of Pressure Vessels, Heat Exchangers and Piping Components
  • San Diego, California, USA, July 25–29, 2004
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4672-5
  • Copyright © 2004 by ASME


The analyses address a nominal 62-inch diameter nozzle in a nominal 124-inch diameter shell with a reinforcement pad. The nozzle is in a channel of a heat exchanger. This results in stiffening of the shell (adjacent to the nozzle) by the tube sheet and the channel head. The results of a WRC 297 analysis, linear elastic analysis, limit load analysis and plastic analysis are compared. The finite element analyses were accomplished utilizing commercial software and typical modeling techniques. As there is significant variance in the results derived with the different methodologies, the authors discuss the comparison of the results.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In