0

Full Content is available to subscribers

Subscribe/Learn More  >

Circulation Controlled Airfoil Analysis Through 360 Degrees Angle of Attack

[+] Author Affiliations
Henry Z. Graham, IV, Meagan Hubbell, Chad Panther, Jay Wilhelm, Gerald M. Angle, II, James E. Smith

West Virginia University, Morgantown, WV

Paper No. ES2009-90341, pp. 571-577; 7 pages
doi:10.1115/ES2009-90341
From:
  • ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences
  • ASME 2009 3rd International Conference on Energy Sustainability, Volume 1
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4889-0 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

Wind turbines are a source of renewable energy with an endless supply. The most efficient types of wind turbines operate by utilizing the lift force of its blades to create a rotational force. The power capabilities of a wind turbine are tied to the blades’ ability to convert the aerodynamic forces into rotational energy. Vertical axis wind turbines (VAWT), unlike the more common horizontal axis (HAWT) type, do not need to be directed into the wind and can place the transmission and electrical power generation components at the bottom of the turbine shaft, near the ground. Currently VAWTs cannot feather or pitch the blades, in the same fashion as a HAWT, for a lift change to control power generation and/or rotational speed at different or changing wind speeds. A method of increasing the lift of a blade without physically moving the blade is to use circulation control (CC), via a blowing slot over a rounded trailing edge. The CC air flow entrains the air around the blade to create more lift. Adding an actuated valve for the blowing slot allows a CC-VAWT to control the amount of lift generated, as well as the location of the augmentation relative to the wind direction, resulting in augmented power generation. In order to study the performance capabilities of a CC-VAWT, a NACA0018 blade was modified to incorporate circulation control. This modified shape was analyzed using computational fluid dynamics at two Reynolds numbers and a wide range of angles of attack. The lift to drag ratio of the CC-VAWT blade shows benefits at low Reynolds numbers over a NACA0018 blade for post stall angles of attack, but there is a decrease in the lift to drag before stall due to a significant increase in drag of the circulation control models. Further CFD refinement and experimental investigations are recommended to validate the predicted effects circulation control will have on the performance of a VAWT.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In