Full Content is available to subscribers

Subscribe/Learn More  >

A New Approach for Evaluating Radiation Embrittlement of Reactor Pressure Vessel Steels

[+] Author Affiliations
J. A. Wang, N. S. V. Rao

Oak Ridge National Laboratory, Oak Ridge, TN

Paper No. PVP2004-2305, pp. 105-114; 10 pages
  • ASME/JSME 2004 Pressure Vessels and Piping Conference
  • Fracture Methodologies and Manufacturing Processes
  • San Diego, California, USA, July 25–29, 2004
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4669-5
  • Copyright © 2004 by ASME


A new approach is developed to predict the radiation embrittlement of reactor pressure vessel steels. The Charpy transition temperature shift data contained in the Power Reactor Embrittlement Database is used in this study. The results indicate that this new embrittlement predictor achieved about 67.3% and 52.4% reductions respectively, in the uncertainties for General Electric (GE) Boiling Water Reactor plate and weld data compared to Regulatory Guide 1.99, Rev. 2 (RG1.99/R2). The implications of irradiation temperature effects for the development of radiation embrittlement models are then discussed. A new approach for the Charpy trend curve is also developed, which incorporates the chemical compositions into the governing fitting equation. This approach reduces the uncertainty of Charpy data fitting and provides an expedient scheme to link and project the surveillance test results to those for reactor pressure vessel steels.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In