0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Computation of the Pulsatile Flow in a Turbocharger With Realistic Inflow Conditions From an Exhaust Manifold

[+] Author Affiliations
Fredrik Hellstrom, Laszlo Fuchs

The Royal Institute of Technology, Stockholm, Sweden

Paper No. GT2009-59619, pp. 1317-1329; 13 pages
doi:10.1115/GT2009-59619
From:
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4888-3 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME

abstract

The combined effect of different secondary perturbations at the turbine inlet and the pulsatile flow on the turbine performance was assessed and quantified by using Large Eddy Simulation. The geometrical configuration consists of a 4-1 exhaust manifold and a radial turbine. At the inlet to each port of the manifold, engine realistic pulsatile mass flow and temperature fields are specified. The turbine used in this numerical study is a vaneless radial turbine with 9 blades, with a size that is typical for a turbocharger mounted on a 2.0 liters IC engine of passenger cars. The flow field is investigated and the generated vortices are visualized to enable a better insight into the unsteady flow field. Correlations between the turbine inflow conditions, such as mass flow rate, strength of secondary flow components, and the turbine performance have also been studied. The results show that the flow field entering the turbine is heavily disturbed with strong secondary flow components and disturbed axial velocity profile. Between the inlet to the turbine and the wheel, the strength of the secondary flow and the level of the disturbances of the axial flow decrease which gives large losses in this region. Even though the magnitude of the disturbances decrease, the flow entering the wheel will still be disturbed, resulting in a perturb inlet flow to the wheel which affects the shaft power output from the turbine.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In