Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Computational Investigations of Low-Pressure Turbine Separation Control Using Vortex Generator Jets

[+] Author Affiliations
Ralph J. Volino

United States Naval Academy, Annapolis, MD

Olga Kartuzova, Mounir B. Ibrahim

Cleveland State University, Cleveland, OH

Paper No. GT2009-59983, pp. 1105-1117; 13 pages
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4888-3 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME


Boundary layer separation control has been studied using vortex generator jets (VGJs) on a very high lift, low-pressure turbine airfoil. Experiments were done under low freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) of 25,000, 50,000 and 100,000. Jet pulsing frequency, duty cycle, and blowing ratio were all varied. In all cases without flow control, the boundary layer separated and did not reattach. With the VGJs, separation control was possible even at the lowest Reynolds number. Pulsed VGJs were more effective than steady jets. At sufficiently high pulsing frequencies, separation control was possible even with low jet velocities and low duty cycles. At lower frequencies, higher jet velocity was required, particularly at low Reynolds numbers. Effective separation control resulted in an increase in lift of up to 20% and a reduction in total pressure losses of up to 70%. Simulations of the flow using an unsteady RANS code with the four equation Transition-sst model produced good agreement with experiments in cases without flow control, correctly predicting separation, transition and reattachment. In cases with VGJs, however, the CFD did not predict the reattachment observed in the experiments.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In