0

Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Crack Modeling and Simulation Based on Continuum Damage Mechanics

[+] Author Affiliations
Masakazu Takagaki

University of Tokyo, Meguro, Tokyo, Japan

Toshiya Nakamura

Japan Aerospace Exploration Agency, Mitaka, Tokyo, Japan

Paper No. PVP2004-2993, pp. 201-207; 7 pages
doi:10.1115/PVP2004-2993
From:
  • ASME/JSME 2004 Pressure Vessels and Piping Conference
  • Elevated Temperature Design and Analysis, Nonlinear Analysis, and Plastic Components
  • San Diego, California, USA, July 25–29, 2004
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4667-9
  • Copyright © 2004 by ASME

abstract

Numerical simulation of fatigue crack propagation based on fracture mechanics and conventional finite element method requires huge amount of computational resources when cracked structure is subjected to complicated condition such as the cases of multiple site damage or thermal fatigue. The objective of the present study is to resolve this difficulty by employing the continuum damage mechanics (CDM). An anisotropic damage variable is defined to model a macroscopic fatigue crack and its validity is examined by comparing the stress distributions around the crack with those obtained by an ordinary fracture mechanics method. Together with the assumptions on crack opening/closing and damage evolution, numerical simulations are conducted for low cycle fatigue crack propagation behaviors in a plate with single and two cracks. The results show good agreement with the experiments. Finally, propagations of multiply distributed cracks under low cycle fatigue loading are simulated to demonstrate the potential applicability of the present method.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In