Full Content is available to subscribers

Subscribe/Learn More  >

Probabilistic Fretting Fatigue Assessment of Aircraft Engine Disks

[+] Author Affiliations
Michael P. Enright, Kwai S. Chan, Jonathan P. Moody

Southwest Research Institute, San Antonio, TX

Patrick J. Golden

Air Force Research Laboratory, Wright-Patterson AFB, OH

Ramesh Chandra, Alan C. Pentz

NAVAIR, Patuxent River, MD

Paper No. GT2009-60224, pp. 1135-1146; 12 pages
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4887-6 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME


Fretting fatigue is a random process that continues to be a major source of damage associated with the failure of aircraft gas turbine engine components. Fretting fatigue is dominated by the fatigue crack growth phase and is strongly dependent on the magnitude of the stress values in the contact region. These stress values often have the most influence on small cracks where traditional long-crack fracture mechanics may not apply. A number of random variables can be used to model the uncertainty associated with the fatigue crack growth process. However, these variables can often be reduced to a few primary random variables related to the size and location of the initial crack, variability associated with applied stress and crack growth life models, and uncertainty in the quality and frequency of non-deterministic inspections. In this paper, an approach is presented for estimating the risk reduction associated with non-destructive inspection of aircraft engine components subjected to fretting fatigue. Contact stress values in the blade attachment region are estimated using a fine mesh finite element model coupled with a singular integral equation solver and combined with bulk stress values to obtain the total stress gradient at the edge of contact. This stress gradient is applied to the crack growth life prediction of a mode I fretting fatigue crack. A probabilistic model of the fretting process is formulated and calibrated using failure data from an existing engine fleet. The resulting calibrated model is used to quantify the influence of inspection on the probability of fracture of an actual military engine disk under real life loading conditions. The results can be applied to quantitative risk predictions of gas turbine engine components subjected to fretting fatigue.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In