0

Full Content is available to subscribers

Subscribe/Learn More  >

Study on Probabilistic Model of GH4133B for Fatigue-Creep Failure

[+] Author Affiliations
Dianyin Hu, Rongqiao Wang

Beijing University of Aeronautics and Astronautics, Beijing, China

Paper No. GT2009-59425, pp. 1081-1086; 6 pages
doi:10.1115/GT2009-59425
From:
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4887-6 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME

abstract

GH4133B is a nickel-base superalloy which was developed for use in the manufacture of aero-engine turbine disks and other high-temperature components. Since these components are operated at high temperature and under cyclic loading, damage resulting from fatigue-creep interaction is the main factor. The situation is often simulated in laboratories at high temperature low-cycle fatigue. The interactive effect between different loading levels should be considered. The fatigue-creep experiments for alloy GH4133B at 600 Celsius degree have been carried out at continuous cyclic creep (CF) loading to investigate the interaction of creep damage and fatigue damage. Fracture surfaces are examined under the scanning electron microscope (SEM). Then a nonlinear fatigue-creep failure criterion function proposed by Hongyin Mao is employed to fit the experimental data. The probabilistic model of GH4133B under CF loading is established based on the deterministic failure function. Firstly, the random variables influencing the fatigue-creep life and values of the distribution parameters are investigated. Then fatigue-creep damage interaction is discussed and a linear damage accumulation rule is considered, according to which the limit state function used to express the probability of failure is proposed. Lastly, reliability analysis under fatigue-creep failure is proceeded by applying analytical and simulation methods. Furthermore, the random variable with low sensitivity index through the sensitivity analysis can be treated as deterministic parameter during the reliability analysis and reliability design in order to improve the computing efficiency.

Copyright © 2009 by ASME
Topics: Creep , Fatigue , Failure

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In