0

Full Content is available to subscribers

Subscribe/Learn More  >

Centrifugal Compressor Stability Prediction Using a New Physics Based Approach

[+] Author Affiliations
J. Jeffrey Moore, David L. Ransom

Southwest Research Institute® , San Antonio, TX

Paper No. GT2009-60229, pp. 1023-1031; 9 pages
doi:10.1115/GT2009-60229
From:
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4887-6 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME

abstract

The accurate prediction of centrifugal compressor stability continues to be an important area of interest in the oil and gas industry. Ensuring stability is critical to the cost-effective installation and operation of these machines in remote environments, where field stability problems are much more expensive to diagnose and correct. Current industry standards and tools for the prediction of impeller destabilizing forces are based on empirical methods that, to date, have served fairly well for systems with reasonable stability margins. However, as stability margins are decreased, use of a modeling method that is more physics based and can better represent the observed trends in machine behavior at low stability margins is required. Furthermore, the development of mega-class Liquefied Natural Gas (LNG) compressors and ultra-high pressure reinjection compressors provides further motivation to improve accuracy. In this paper, a new physics based expression for the prediction of impeller cross-coupling, previously described by Moore, et al. [1] is further investigated by analyzing several classes and scale factors of impellers ranging from 2-D designs used in reinjection to full 3-D impellers typically used in LNG. The new expression is based on both Computational Fluid Dynamics (CFD) simulation and experimental test data from a known instability. These results are then applied to two case studies of marginally stable and unstable compressors in the field that were studied by the authors’ company. For each case study, the system stability is evaluated using both the new physics based expression as well as the more traditional empirical approaches. Comparisons are made for overall stability prediction as well as sensitivity to system changes. Conclusions are made regarding the applicability and limits of this new approach.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In