Full Content is available to subscribers

Subscribe/Learn More  >

Rotordynamic Stability Under Partial Admission Conditions in a Large Power Steam Turbine

[+] Author Affiliations
Lin Gao, Yiping Dai

Xi’an Jiaotong University, Xi’an, Shaanxi, China

Zhiqiang Wang

Harbin Marine Boiler & Turbine Research Institute, Harbin, Heilongjiang, China

Yatao Xu

Beijing Guohua Electric Power Technology Research Center, Beijing, China

Qingzhong Ma

Shanxi Electric Power Research Institute, Taiyuan, Shanxi, China

Paper No. GT2009-59467, pp. 795-802; 8 pages
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4887-6 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME


At present, the majority of power steam turbines operate under part-load conditions during most of their working time in accordance with the fluctuation of power supply. The load governing method may cause partial admission in control stage and even some pressure stages, which impacts much on the stability of the rotor system. In this paper, CFD and FEM method were used to analyze the effect of partial admission on rotor system stability. A new approach is proposed to simplify the 3D fluid model for a partial admission control stage. Rotordynamic analysis was carried out to test the stability of the HP rotor of a 600 MW steam turbine under different load conditions. 13 different governing modes on the rotor stability were conducted and data were analyzed. It is found that rotor stability varies significantly with different governing modes and mass flow rates, which is consistent with the operation. Asymmetric fluid forces resulted from partial admission cause a fluctuation of the dynamic characteristics of the HP bearings, which consequently affect the stability of the rotor system. One of the nozzle governing modes in which the diagonal valves open firstly is demonstrated as the optimal mode with the maximum system stability. The optimization has been applied to 16 power generation units in China and result in improved rotor stabilities.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In